Simulation of Microscopic Shrinkage Behavior in Sintering of Powder Compact.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of MgTiO3 Powder Via Co-Precipitation Method and Investigation of Sintering Behavior

A co-precipitation method was used for synthesis of pure MgTiO3 ceramic powder with Mg(NO3)2.6H2O, TiCl4 or C12H28O4Ti and NaOH as raw materials. In this method, solutions of 1 M, Mg (NO3)2 6H2O and 2 M, NaOH were prepared. A stoichiometric amount of Ti precursors from TiCl4 or C12H28O4Ti was weighted. Solutions of Mg (NO3)2. 6H2O and Ti precursor were added dropwise to NaOH solution unde...

متن کامل

INITIAL SINTERING KINETICS OF LITHIUM META TITANATE AT CONSTANT RATES OF HEATING

In order to evaluate the sintering behavior of lithium meta titanate (Li2TiO3) powder, the shrinkage of powder compact was measured under constant rates of heating. Densification curves for Li2TiO3 have been constructed with the help of shrinkage powder measured at different heating rates. The activation energy at the initial stage of sintering was determined by analyzing the densification curv...

متن کامل

Evaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A

سال: 1996

ISSN: 0387-5008,1884-8338

DOI: 10.1299/kikaia.62.2804